Chapter 2

Representing Motion

Sections 2.1 Picturing Motion

Motion - - Ways to picture motion:

- - a series of images of a moving object that records its after intervals. - replacing the object
- - replacing
- _ a series of images of a
\qquad

4 Types of Motion

- 1) _ no change in motion
- 2) - the object will get through equal distances in each time frame
- 3) __ the object will cover a greater distance in each time frame. 4) _ the object will cover less distance in each time frame.

Vector Diagram

Use a particle model to draw a motion diagram for the following situations:
 - Object starting at rest and speeding up.

- Object starting at rest, speeding up to a constant speed, and then slowing to a stop.
- A wheel turning at a constant speed. First placing the dot on the hub.

Next placing the dot on the rim.

section 2.2
 When and Where?

Coordinate System

- Tells the location of the the
directions.
- __ - the separation between
an and the \qquad
Represented with an
drawn
from the
- To determine displacement, velocity, and acceleration, a must be specified.
- Set up whatever coordinate system that is most for the situation.

- EX: The sign of average velocity depends upon the chosen coordinate system.
, Two coordinate systems.
Same situation.
Different signs

- a quantity that contains only

EX:

- a quantity that contains both magnitude and

EX:

Adding Vectors

- Vector are represented with
- Add two vectors by placing them

o. $\overline{\text { vector that represents }}$ the of two or more vectors.

The resultant always points from the \qquad
vector that represents
\qquad
\qquad

Time

- Time is a

Time Interval - the between two times.
o Change in time: $\Delta t=$

- EX: Splits

Distance vs. Displacement

traveled.
Scalar
"How much ground the object has covered"

- the
position of an object.
$\Delta d=$
Vector - must have a
"How far an object ended up from where it started"

Examples:

Examples:

What is the coaches resulting distance and displacement?

Section 2.3 and 2.4 Position-Time Graphs How Fast?

Speed

- The ratio of the total traveled to the ___ of travel.

- Scalar quantity - ___ does not matter

EX:

If it takes you 8 hours to travel 440 miles, what is your average speed?

Velocity

- Ratio of \qquad to total
\qquad -

- Vector quantity - \qquad matters EX:

Velocity will change if either d or \dagger change OR if the direction of motion changes.

Instantaneous Velocity

- The velocity of an object at a particular in time.
- EX: The speedometer reading on your car at an instant in time.
o EX: Instantaneous vs. Average

Position-Time Graphs

- Shows the a ___ of an object (compared to the origin) at equal intervals.
- The ___ of a position-time graph is
Slope indicates both
and
Pay attention to units.

Describe the Motion.

Position-Time Graph Catching Up Problem: CMV 1 and 2

Describe the Motion.

Find the velocity for each section. Rank the velocities from least to greatest.

Motion Diagrams and P-† Graphs:

- What is the coach's average speed and average velocity?

- If Clara runs 1600 m in lane 1 in 4:50 minutes, what is her average speed and average velocity (in $\mathrm{m} / \mathrm{s})$?

