Chapter 2 Representing Motion

Sections 2.1 Picturing Motion

Motion –

Ways to picture motion:

moving object that records its ______ intervals.

replacing the object in a motion diagram with a _____

4 Types of Motion

- 1) ______ no change in motion
 2) ______ the object will get through equal distances in each time frame
- 3) _____ the object will cover a greater distance in each time frame.
 4) _____ - the object will cover less distance in each time frame.

Vector Diagram

Use a particle model to draw a motion diagram for the following situations:

Object starting at rest and speeding up.

Object starting at rest, speeding up to a constant speed, and then slowing to a stop.

A wheel turning at a constant speed. First placing the dot on the hub.

> Next placing the dot on the rim.

Section 2.2 When and Where?

Coordinate System

Tells the location of the _____ and the _____ directions.

 ______ - the separation between an ______ and the ______.
 > Represented with an ______ drawn from the ______.

To determine displacement, velocity, and acceleration, a ______ must be specified.

Set up whatever coordinate system that is most ______ for the situation.

• EX: The sign of average velocity depends upon the chosen coordinate system.

- > Two coordinate systems.
- > Same situation.
- > Different signs

– a quantity that contains only

> EX:

- a quantity that contains both magnitude and _ > EX:

Adding Vectors

- Vector are represented with _____.
- Add two vectors by placing them

- the vector that represents the ______ of two or more vectors.

The resultant always points from the _____

Distance vs. Displacement

_____ – the total amount

in

traveled.

- > Scalar
- ''How much ground the object has covered''

position of an object.

- > ∆d =
- Vector must have a _____
- "How far an object ended up from where it started"

Examples:

Examples:

What is the coaches resulting distance and displacement?

Section 2.3 and 2.4 Position-Time Graphs How Fast?

Speed The ratio of the total of travel. traveled to the Distance Traveled Average Speed Time of Travel Scalar quantity – _ does not matter > EX:

If it takes you 8 hours to travel 440 miles, what is your average speed?

Ratio of ______ to total

matters

```
Vector quantity – _
> EX:
```

Velocity

 Velocity will change if either d or t change OR if the direction of motion changes.

Instantaneous Velocity

The velocity of an object at a particular in time.

 EX: The speedometer reading on your car at an instant in time.

• EX: Instantaneous vs. Average

Position-Time Graphs

Shows the a ______ of an object (compared to the origin) at equal intervals.

• The ______ of a position-time graph is ______.

Slope indicates both

Pay attention to units.

Describe the Motion.

Describe the Motion.

Find the velocity for each section. Rank the velocities from least to greatest.

Motion Diagrams and P-t Graphs:

What is the coach's average speed and average velocity?

If Clara runs 1600m in lane 1 in 4:50 minutes, what is her average speed and average velocity (in m/s)?