

Skydiving Intro

- What forces are acting on the skydivers?
-Whatacceleration occurs?
- How cantívers change these torees? change their

veloctites?

E.- hitto://iloveskydiving.org/view/videos/inka-iftto-

I orofessional-skydiver-rolling-in-the-sky/

Introduction

- Changing position is defined as
- Changing velocity is defined as
- What causes acceleration?
- Force : A upon an object.
- Forces are
- System: The object that
- Environment/External World: Everything around the object that is
- Agent: Whatever is

Types of Forces:

forces

forces

Contact Forces

Caused by between objects.

- frictional forces
- normal forces
- applied forces
- tensional forces
- air resistance forces
- spring forces

Friction Force

- Force exerted by a as an object
the motion of the object.
- Friction depends on
and upon the degree to which they are

Force of

As a book slides across a table from left to right, the force of friction acts on the book to slow it dourn and bring it to rest.

Normal Force

- The contact force exerted by a that on an object

 is on.

Applied Force

- A force which is \qquad to an object by a \qquad

Normal

Tensional Force

- The force transmitted through a when it is pulled by forces acting from each end.
- Force is \qquad to the rope and points the object.

Air Resistance Force

- Type of force the motion of the object.
- Often neglected for objects that it
- Noticeable for objects which travel at or for objects with

Spring Force

- Force exerted by a spring.
- Force is of the object.
force.

Force Due to Gravity (Weight)

 F_{g}- Force from the pulling on you.
- To find weight:
- $\mathrm{F}_{\mathrm{g}}=\mathrm{m}{ }^{*} \mathrm{~g}$
- $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ (on
- m = mass (in kg)
- Do not confuse weight with

Mass \& Weight

- Mass
-Constant (at every location)
-Balance
-Kilograms
- Weight
-Gravity dependent
-Scale
-Newtons

Free Body Diagram

 representation of all acting upon an object.- Shows both and of all the forces.
- Determines
- The
of all the forces taking ___ into account.
- An object will in the same direction as the acting on it.
- Always draw the tail of the vector on the object. -Represent the object with a dot.

Free Body Diagram

- An egg is freefalling from a nest in a tree.
- Diagram the forces acting on the egg as it is falling.

Free Body Diagram

- A girl is
suspended
motionless from
a trapeze
hanging from the ceiling by ropes.
- Diagram the forces on the bar.

Free Body Diagram

- A skydiver is descending with a constant velocity.
- Diagram the forces
on the sky diver.

Free Body Diagram

- A car is coasting to the right and slowing down.
- Diagram the forces on the car.

Free Body Diagram

- A rightward force is applied in order to move a book across a desk at constant velocity.
- Neglect air resistance.
- Diagram the forces.

Find Net Force

A construction crane applies a
1200 N force to
an 81.6 kg sign

Find Net Force

An 800N skydiver falls with 600N air resistance.

Newton's $2^{\text {nd }}$ Law:

causes

- The acceleration depends on
-the net force acting on the object (___ related)
-the mass of the object (related)

FORCE UNITS - Newton

- One Newton is the amount of force required to give a $1-\mathrm{kg}$ mass an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$
- A Newton is abbreviated by a "N."

$$
1 \mathrm{mertan}=1 \mathrm{~kg}^{*} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Important Summary:

- If the net force on an object is __, the object will have a \qquad velocity or velocity.
- It is in \qquad
- If the net force on an object is not 0 , the object will have an ___ in the direction as the \qquad .
- When finding net force work separately with \qquad and forces.
- What acceleration will result when a $12-\mathrm{N}$ net force is applied to a 3-kg object?

Try It: The diagram represents a pushed shopping cart.

$$
\begin{aligned}
& \mathrm{m}= \\
& : \\
& \mathbf{t}=
\end{aligned}
$$

$F_{\text {net }}=$

Arnold needs to lift a 35 kg rock. If he exerts an upward force of 502 N on the rock, what is the rock's acceleration?

EX:

A 50 kg bucket is being lifted by a rope. The rope will not break in the tension is 525 N or less. The bucket started at rest, and after being lifted 3 m , it is moving at $3 \mathrm{~m} / \mathrm{s}$. If the acceleration is constant, is the rope in danger of breaking?

Newton's $1^{\text {st }}$ Law

An object at rest will \qquad and an object in motion will , unless acted on by an
"Objects keep on doing what they're doing" Also called the Law of

Inertia

- Inertia - the tendency of an object
- An object:
- At
wants to stay .
- In wants to stay
- Inertia is a of the object that depends on its
\qquad
more
= more

Inertia

Inertia

1st Law Application

What will happen to a coffee cup filled to the rim while starting a car from rest or while bringing a car to rest from a state of motion? Why?

1st Law Application

- The head of a hammer can be tightened onto the wooden handle by banging the bottom of the handle against a hard surface. Why?

Explain how the $1^{\text {st }}$ Law can apply to:

- Ketchup
- Skateboards
- Seatbelts

Check for Understanding

- Ben is being chased through the woods by a moose. If Ben makes a zigzag pattern through the woods, he is able to use the large mass of the moose to his own advantage.
- Explain this in terms of inertia and Newton's first law of motion.

Check for Understanding

- The 15th hole at the Putt-Putt Golf Course has a large metal rim which guides the ball towards the hole.
- A player hits their golf ball around the metal rim When the ball leaves the rim, which path (1, 2, or 3) will the golf ball follow? Explain.

Gravitational Force/Weight

- $\mathrm{F}_{\mathrm{g}}=\mathrm{mg}$
- $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
- You can use a
to measure weight.
- When you are standing on a bathroom scale, the equals the -
- In different locations or situations, the scale may read \qquad .

Apparent Weight

- Apparent weight - what your weight to be due to a acting on you and giving you an
- What your weight \qquad
- May be \qquad or
- EX:

Weightlessness

- Weightlessness - An object's apparent weight of ___ that results when there are \qquad pushing up on an object.
- EX: If the cable of the elevator breaks and you and the scale are both in free fall.

Example:

- Suppose you are standing in an elevator that is accelerating upward. Is the magnitude of the normal force exerted on you by the floor of the elevator the same as, larger than, or smaller than the magnitude of your weight?
- You are riding in an elevator when you suspect the cable has broken. What can you do to quickly determine if this is the case or not?

EX:

Your mass is 65 kg and you are standing on a scale in an elevator. Starting from rest, the elevator accelerates upward at $3 \mathrm{~m} / \mathrm{s}^{2}$ for 4 seconds and then continues at a constant speed. Find the scale reading during both parts of the elevator ride.

Drag Force

- Drag force - the force exerted by a on the object

- Depends on:
- When an object is falling, it experiences an due to the
and a
- Terminal Velocity - the that is reached
when the the

Terminal Velocity

- As a falling object encounters an
- Objects will continue to until the balances the \qquad -
- Once the two forces are _, the object has reached its terminal velocity. The object will continue to fall to the ground with this terminal velocity.

Which has a larger terminal velocity - a feather or elephant? Explain.

Skydiving

air resistance, objects

fall at different because they have different

air resistance,
 objects

fall at the
WHY:

Free Fall - NO Air Resistance
 $$
m=1000 \mathrm{~kg}
$$
 $$
m=1 \mathrm{~kg}
$$

$$
\mathrm{A}=\frac{\mathrm{F}_{\mathrm{met}}}{\mathrm{~m}}=\frac{100000}{1000 \mathrm{~kg}}
$$

$$
\mathrm{a}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}
$$

$$
\begin{gathered}
\mathrm{a}=\frac{\mathrm{et}}{\mathrm{~m}}=\frac{10 \mathrm{~N}}{1 \mathrm{~kg}} \\
\mathrm{a}=10 \mathrm{~m} / \mathrm{s} / \mathrm{s}
\end{gathered}
$$

Newton's $3^{\text {rd }}$ Law

- For every __ there is an
-
- Interactive Pair - two forces that are in direction and
- These two forces
- NOTE: These forces because they

When identifying interaction pairs, keep in mind that they will always occur in

Examples of $3^{\text {rd }}$ Law Forces:

- When you sit in your chair, your body exerts a
and the chair exerts an \qquad -
- When you sit in your chair, Earth exerts a and you exert \qquad .
- "Press on a rock and the rock presses on you (with an equal, but opposite force)"
- Newton

Bird

- The wings of a bird push air downwards. In turn, the air reacts by pushing the bird upwards.

Car

- A car is equipped with wheels which spin backwards. As the wheels spin backwards, they grip the road and push the road backwards. In turn, the road reacts by pushing the wheels forward.

Equal and opposite

Equal and Opposite

- Bowling ball pushes pin leftwards.
- Pin pushes bowling ball rightwards

If the force on the Earth is equal to the force on you why doesn't the Earth rise up to meet you when you jump into the air?

When a softball with a mass of 0.18 kg is dropped, it acceleration toward Earth is equal to g , the acceleration due to gravity. What is the force on Earth due to the ball, and what is the Earth's resulting acceleration? Earth's mass is $6 \times 10^{24} \mathrm{~kg}$.

