

CH 4 FORCES

Skydiving Intro What forces are acting on the skydivers? What acceleration occurs? How can divers change these forces? change their velocities?

http://iloveskydiving.org/view/videos/inka-tiittoprofessional-skydiver-rolling-in-the-sky/

Introduction

- Changing position is defined as _____.
- Changing velocity is defined as

What causes acceleration?

Force

upon an

- Force : A _____
 object.
 - Forces are _____
- System: The object that
- Environment/External World: Everything around the object that is
- Agent: Whatever is ______

Types of Forces:

forces

forces

Contact Forces

- Caused by _____ between objects.
- frictional forces
- normal forces
- applied forces
- tensional forces
- air resistance forces
- spring forces

Friction Force ____

Force exerted by a ______ or as an object ______ or

 the motion of the object.
 Friction depends on ______ and upon the degree to which they are _____.

As a book slides across a table from left to right, the force of friction acts on the book to slow it down and bring it to rest.

Normal Force

 The contact force exerted by a that on an object

is on.

to the surface.

Applied Force

A force which is ______to an object by a ______

Tensional Force

- The force transmitted through a _______ when it is pulled ______ by forces acting from each end.
- Force is ______to the rope and points ______the object.

Air Resistance Force _

- Type of ______ force
- <u>b</u> the motion of the object.
- Often neglected for objects that it
- Noticeable for objects which travel at _____or for objects with

Spring Force _

- Force exerted by a _
- spring.

• Force is _____ of the object.

• _____ force.

Force Due to Gravity (Weight) F_g

- Force from the pulling on you.
- To find weight:
- $\mathbf{F}_{g} = \mathbf{m} * \mathbf{g}$
 - g = 9.8 m/s² (on _____
 - m = mass (in kg)
- Do not confuse weight with

Mass & Weight

- Mass
 - -Constant (at every location)
 - -Balance
 - -Kilograms
- Weight
 - -Gravity dependent
 - -Scale
 - -Newtons

Free Body Diagram representation of all acting upon an object.

- Shows both _____ and ____ of all the forces.
- Determines _
 - The _____ of all the forces taking _____ into account.
 - An object will _____ in the same direction as the _____ acting on it.

Always draw the tail of the vector on the object.Represent the object with a dot.

- An egg is freefalling from a nest in a tree.
- Diagram the forces acting on the egg as it is falling.

- A girl is suspended motionless from a trapeze hanging from the ceiling by ropes.
- Diagram the forces on the bar.

- A skydiver is descending with a constant velocity.
- Diagram the forces on the sky diver.

- A car is coasting to the right and slowing down.
- Diagram the forces on the car.

- A rightward force is applied in order to move a book across a desk at constant velocity.
- Neglect air resistance.
- Diagram the forces.

Find Net Force

A construction crane applies a 1200N force to an 81.6 kg sign

Find Net Force

An 800N skydiver falls with 600N air resistance.

causes _

FORCE UNITS - Newton

- One Newton is the amount of force required to give a 1-kg mass an acceleration of 1 m/s²
- A Newton is abbreviated by a "N."

 $1 \text{ Newton} = 1 \text{ kg}^*$

Important Summary:

- If the net force on an object is ___, the object will have a _____ velocity or ____ velocity.
 - It is in _____
- If the net force on an object is not 0, the object will have an _____ in the _____ in the _____.
- When finding net force work separately with ______ and _____ forces.

 What acceleration will result when a 12-N net force is applied to a 3-kg object?

Try It: The diagram represents a pushed shopping cart.

Arnold needs to lift a 35 kg rock. If he exerts an upward force of 502 N on the rock, what is the rock's acceleration?

EX:

A 50 kg bucket is being lifted by a rope. The rope will not break in the tension is 525 N or less. The bucket started at rest, and after being lifted 3 m, it is moving at 3 m/s. If the acceleration is constant, is the rope in danger of breaking?

Newton's 1st Law

An object at rest will ______ and an object in motion will ______ ____, unless acted on by an

"Objects keep on doing what they're doing" Also called the Law of _____

Inertia

- Inertia the tendency of an object _____
- An object:
 - At _____wants to stay _____.
 - In _____ wants to stay _____

Inertia is a _____ of the object that depends on its

more _____ = more _____

1st Law Application

What will happen to a coffee cup filled to the rim while starting a car from rest or while bringing a car to rest from a state of motion? Why?

1st Law Application

 The head of a hammer can be tightened onto the wooden handle by banging the bottom of the handle against a hard surface. Why?

Explain how the 1st Law can apply to:

• Ketchup

Skateboards

Seatbelts

Check for Understanding

- Ben is being chased through the woods by a moose. If Ben makes a zigzag pattern through the woods, he is able to use the large mass of the moose to his own advantage.
- Explain this in terms of inertia and Newton's first law of motion.

Check for Understanding

- The 15th hole at the Putt-Putt Golf Course has a large metal rim which guides the ball towards the hole.
- A player hits their golf ball around the metal rim When the ball leaves the rim, which path (1, 2, or 3) will the golf ball follow? Explain.

Gravitational Force/Weight

- $F_g = mg$
- g = 9.8 m/s²
- You can use a _____ to measure weight.

 - In different locations or situations, the scale may read ______

Apparent Weight

- What your weight _____ like.
 - May be _____ or ____
 - EX:

Weightlessness

- Weightlessness An object's apparent weight of ______that results when there are ______pushing
 - up on an object.
 - EX: If the cable of the elevator breaks and you and the scale are both in free fall.

Example:

 Suppose you are standing in an elevator that is accelerating upward. Is the magnitude of the normal force exerted on you by the floor of the elevator the same as, larger than, or smaller than the magnitude of your weight? You are riding in an elevator when you suspect the cable has broken. What can you do to quickly determine if this is the case or not?

EX:

Your mass is 65 kg and you are standing on a scale in an elevator. Starting from rest, the elevator accelerates upward at 3 m/s² for 4 seconds and then continues at a constant speed. Find the scale reading during both parts of the elevator ride.

- Drag force the force exerted by a _____ on the object _____
- Depends on:

• Terminal Velocity - the ______ that is reached when the ______ equals the _____.

Terminal Velocity

As a falling object _____, it encounters an _____ amount of

- Once the two forces are _____, the object has reached its terminal velocity. The object will continue to fall to the ground with this _____ terminal velocity.

Which has a larger terminal velocity – a feather or elephant? Explain.

_____ air resistance, objects fall at different _____ because they have different

a = 10 m/s/s

Newton's 3rd Law For every ______ there is an

 Interactive Pair – two forces that are in direction and _____ in

magnitude.

- These two forces _____
- NOTE: These forces ______
 because they ______

When identifying interaction pairs, keep in mind that they will always occur in

Examples of 3rd Law Forces:

 When you sit in your chair, your body exerts a ______

and the chair exerts

an

- When you sit in your chair, Earth exerts a and you exert
- "Press on a rock and the rock presses on you (with an equal, but opposite force)"
 Newton

Bird

 The wings of a bird push air downwards. In turn, the air reacts by pushing the bird upwards.

Car

 A car is equipped with wheels which spin backwards. As the wheels spin backwards, they grip the road and push the road backwards. In turn, the road reacts by pushing the wheels forward.

Equal and opposite

- Bowling ball pushes pin leftwards.
- Pin pushes bowling ball rightwards

When a softball with a mass of 0.18 kg is dropped, it acceleration toward Earth is equal to g, the acceleration due to gravity. What is the force on Earth due to the ball, and what is the Earth's resulting acceleration? Earth's mass is 6x10²⁴ kg.