* Chapter 3 Accelerated Motion

*3.1 Acceleration

*Acceleration - the rate at which an object's

*EX: 9.8 m/s/s = 9.8 m/s²

*Acceleration

*Vector - _____ matters
*The sign of acceleration depends on:
 *Whether the object is _____
or _____
*Whether the object is moving in

*EX: A car slowing down in the positive direction would have a negative acceleration.

*EX: A car slowing down in the negative direction would have a positive acceleration.

Examp	le A

Time (s)	Velocity (m/s)
0	0
1	2
2	4
3	6
4	8

Velocity

(m/s)

-8

ħ

-?

Q

Time

(\$)

Û

Ź

3

4

These are both examples of positive acceleration.

Time	Velocity
(s)	(m/s)
0	8
1	6
2	4
3	2
4	0

Time	Velocity
(s)	(m/s) [.]
0	0
1	-2
2	-4
3	-b
4	-8

Example D

These are both examples of negative acceleration.

*Acceleration

*Constant Acceleration means that the object's velocity is ____ every time interval.

...in which case, it is referred to as a constant acceleration.

... or by a changing amount each second ...

Time	Velocity
(s)	(m/s)
0	0
1	1
2	4
3	5
4	7

... in which case, it is referred to as a non-constant acceleration.

*Acceleration

*An object can have zero acceleration if:

* It is at _____

*If it is traveling at a ____

*Acceleration Vectors

*Acceleration Vectors

*A hockey player glides along the ice at a constant speed of 1.25 m/s in the positive direction onto a rough section of ice, which slows him. If he stops in 5 s, what is his acceleration (both magnitude and direction)?

*EX: Determine the acceleration.

*The slope shows

*Straight line shows _

* Curved line shows

*A horizontal line shows

*The area between the curve and the horizontal axis is

*Pay attention to units.

*Yelocity-Time Graphs

*Velocity-Time Graphs

*Same situation. Different coordinate systems.
 *NOTE: Crossing x-axis means a change of direction.

*Velocity-Time Graphs do not tell anything about the origin.

- Refer to the motion graph below to find
- 1. The time interval(s) for positive acceleration
- 2. The time interval(s) for negative acceleration
- 3. The time interval(s) for constant velocity
- 4. The time interval(s) for zero acceleration
- 5. At what time(s) does the car appear to be at rest?
- 6. At what time(s) does the car turn around and move in the opposite direction?

*What are the accelerations and displacements.

*Comparing Graphs

* 3.2 Motion with Constant Acceleration

*Kinematics (Motion) Equations

*Note:

*Pay attention to signs.

 $d = \Delta d = d_f - d_i$

*Every time the acceleration changes, you must treat it as a new part in the problem.

*Kinematics (Motion) Equations

- *Consider a car that moves with a constant velocity of 5 m/s for 5 seconds and then accelerates to a final velocity of 15 m/s over the next 5 seconds.
- *What acceleration does the car have?
- *How far does the car travel in 10 s?

*Vera Side is traveling down the highway at 45 m/s. Vera looks ahead and observes an accident which results in a pileup in the middle of the road. By the time Vera slams on the brakes, she is 50 m from the pileup. She slows at a rate of -15 m/s₂. Will Vera hit the cars in the pileup?

*An engineer is designing the runway of an airport. Of the planes which will use the airport, the lowest acceleration rate is 3 m/s² and the lowest take-off speed is 65 m/s. What is the minimum allowed length of the runway?

- *A bullet moving at 367 m/s enters a lump of clay. The bullet goes into the clay a distance of 0.0621 m.
 - * Determine the acceleration of the bullet while moving into the clay. Assume uniform acceleration.
 - * Determine the bullet's stopping time.

*A cat runs 2 m/s for 3 s, then slows to a stop with an acceleration of -0.80 m/s². What is the cat's displacement during this motion?

*3.3 Free Fall

*An object in free fall is falling under the sole influence _____.

*Two important characteristics':

*1) No ______.

*2) Downward acceleration of ______.

*With no air resistance, ALL objects accelerate at the same rate (9.8m/s²) - no matter what their mass is.

*Objects will only fall at different accelerations if there is air resistance to consider.

*Free fall acceleration: _____

*Dropped: _____

*If an object is projected upward:

*At its max height, velocity is _____

* "g" stays ______ throughout the entire motion

* _____when the object returns to the same height.

*Free Fall Symmary

*The observation deck of a skyscraper is 420 m above the street. Determine the time required for a dropped penny to free fall from the deck to the street.

*A baseball is popped straight up into the air and has a hang-time of 6.25 s. how high does the ball go?

*With what speed in mi/hr must an object be thrown to reach a height of 91.5 m (equivalent to one football field)? Assume negligible air resistance.

*If Mr. Wade has a vertical leap of 1.29 m, what is his take-off speed and hang-time?