CHAPTER 1 WHAT IS PHYSICS?

1.1 MATHEMATICS AND PHYSICS

PHYSICS

- A branch of knowledge that involves the study of the (from to the
\qquad

MATH IN PHYSICS

- Equations are used to model and make \qquad -

SI UNITS

- In order to effectively communicate results, scientists need a ___system of measurements.
(SI)
- A convenient set of measurements related by
- Scientific institutions have defined and regulate measures
- See Handout/Textbook

THE METER IS DEFINED AS:

- 1/10,000,000 of the distance form the to the
- Distance between 2 lines engraved on a bar in Paris.
- Distance traveled by light in a in 1/299,792,458 seconds.

THE SECOND IS DEFINED AS:

- 1/86,400 of the average solar
- Frequency of the \qquad emitted my a cesium atom.

NIST-7: A Cesium Atomic Clock

Was the lirst N/ST atomic clock to. use lasers to detect cesium atoris
(c)

Mcasured seconds by counting vibrations of cesuam- 133 atoms

THE KILOGRAM IS DEFINED AS:

- Mass of a small platinum-iridium metal cylinder kept at a controlled and

DIMENSIONAL ANALYSIS

- A method of treating units as algebraic quantities, that can be
- Use to see what your final unit should be.
- EX:

CONVERTING UNITS

- Multiply by a form of one to change the but not the \qquad .
- Convert to base unit first:
- Put the \qquad with the \qquad
- Units in "opposite locations" cancel

EX: CONVERT

- 5.9 km to m
- 47.8 pm to mm
- 5.56 ng to kg

SCIENTIFIC NOTATION

- A way to write really \qquad numbers.
- Writes numbers as powers of 10 .
- EX: 1,700 =
- EX: $0.0000079=$
- Make sure you know how to use scientific notation on your calculator.

SIGNIFICANT DIGITS

- The \qquad in a measurement (last digit for any given measurement is the uncertain digit).
- Numbers believed to be correct
- Rules:
- 1) \qquad digits are always significant.
- EX: $8.954=4$ sd
- 2) All \qquad after the decimal are significant.
- EX: $5.3331000=8 \mathrm{sd}$
-3) \qquad between 2 other sig digs are always significant.
- EX: 809.07 = 5 sd
- 4) Zeros used solely as \qquad are not significant.
- EX: $0.00000000005=1 \mathrm{sd}$

SIGNIFICANT DIGITS

- Scientific notation can help clear up any ambiguity when it comes to determining how many significant digits a value has.
- EX: 184, 000could have 3,4,5, or 6 sd.
- 1.84000×10^{6} has 6 sd

STATE THE NUMBER OF SIGNIFICANT DIGITS IN EACH:

- 3021
- 7.8×10^{5}
- 7.08×10^{5}
- 7.80×10^{7}
- 0.0000007021
- 59.0000
- Determining the correct number of sd after performing a mathematical operation:
- Add/Sub - least \qquad number
- EX: $5.12 \mathrm{~cm}+6.129 \mathrm{~cm}$
- Mult/Div - least number of
- EX: 12.78 mx 1.23 m

$\mathrm{A}=1.24 \mathrm{M} \quad \mathrm{B}=0.23 \mathrm{CM}$

- Which has more sig digits?
- Which is more precise?

A SCIENTIFIC METHOD:

SCIENTIFIC METHOD

- Experiments/Results must be \qquad .
- Other scientists must be able to the experiment with similar results

SCIENTIFIC LAW

- A rule of nature that sums up to describe a \qquad .
- Laws only describe \qquad happens - not they happen.
- EX: Law of Reflection - angle of incidence equals the angle of reflection.

SCIENTIFIC THEORY

- An \qquad based on many
observations supported by
- Best available \qquad for why things happen the way they do.
- EX: Einstein's Theory of Relativity

1.2 MEASUREMENT

MEASUREMENT

- A comparison between an \qquad quantity and an standard.
- EX: You measure your desk with a meter stick.
- Many measurements contain a certain amount of
- A new measurement within the margin of uncertainty the old measurement .

COMPARING RESULTS AND UNCERTAINTIES

- Three students measure the length of a model car:
- Student 1 average: $18.8 \pm 0.3 \mathrm{~cm}$
- Student 2 average: $19.0 \pm 0.2 \mathrm{~cm}$
- Student 3 average: $18.3 \pm 0.1 \mathrm{~cm}$
- Which are in agreement?
- Which are not in agreement?

PRECISION

- The degree of \qquad of a measurement.
- When dealing with multiple measurements, the smaller the variation between them, the more precise they are. (small $\pm)$
- Which student was most precise?
- Which was least precise?

PRECISION

- To get a precise measurement, use a tool with the divisions possible.
- This will allow your measurement to be taken out to more \qquad .

PRECISION

- Always measure to the \qquad and then the last digit.
- A measurement can never be more precise used to measure it.
- EX:
- The precision of a measurement is said to be the smallest division of the tool.
- Meter stick: \qquad divisions
- Max range of error based on tool: \pm \qquad

ACCURACY

- How well the results of an experiment agree with the _("real") value.
- If the model car was actually 19.0 cm , which student was most accurate?
- Which was least accurate?

ACCURACY

- To make sure a measuring tool is accurate (even if it is precise), it must be \qquad
- Make sure it reads \qquad when it should.
- Make sure it gives the correct reading when measuring an standard.

PRECISION VS ACCURACY

PARALLAX

- The apparent in the position of an object when it is viewed from different \qquad .
- Pay attention to the \qquad at which you are reading a measurement. Read it from \qquad .

1.3 GRAPHING DATA
- Independent Variable - the variable that is . The experimenter controls it directly.
- Dependent Variable - depends on the variable.

WHEN PLOTTING DATA:

- 1) Identify the independent and dependent variables.
- Plot the independent variable on the horizontal \qquad axis.
- Plot the dependent variable on the vertical \qquad axis.
- 2) Determine the \qquad of the data and divide your axis accordingly.
-3) Plot the data points and draw in the
\qquad line/smooth curve.
- 4) \qquad and \qquad the graph.

LINEAR RELATIONSHIPS

- A straight \qquad graph.
- Variables are proportional.
- Equation:
- Pay attention to the
\qquad of the slope.
- It often represents a
\qquad .

QUADRATIC RELATIONSHIP

- Graph is a \qquad .
- One variable depends on the \qquad of the other.
- Equation:

INVERSE RELATIONSHIP

- Graph is a \qquad -
- One variable depends on the \qquad of the other.
- Equation: , where "a" is a constant.

RRAS Velocity versus Time taken from Gool

- You can use graphs to make \qquad .
- Make sure your predictions are within reason.
- EX: Graphing length of a spring for different masses.
- What limitations to prediction are there?

