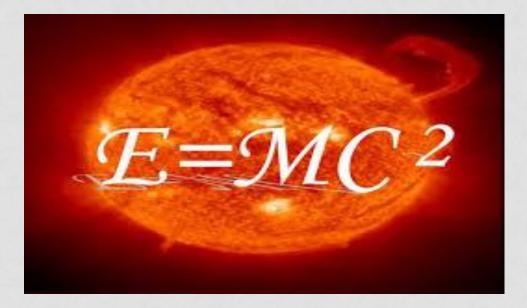
CHAPTER 1 WHAT IS PHYSICS?

1.1 MATHEMATICS AND PHYSICS

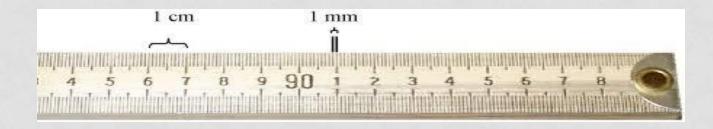

PHYSICS

A branch of knowledge that involves the study of the _______ (from _______ to the ______).

MATH IN PHYSICS

Equations are used to model ______
and make ______

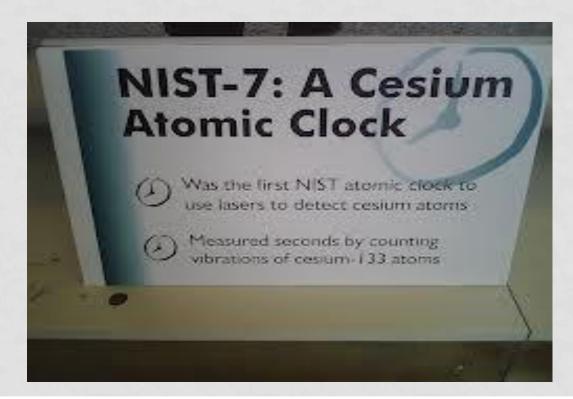
SI UNITS


 In order to effectively communicate results, scientists need a ______system of measurements.

(SI)

- A convenient set of _____ measurements related by _
- Scientific institutions have defined and regulate measures
- See Handout/Textbook

THE <u>METER</u> IS DEFINED AS:


- Distance between 2 lines engraved on a bar in Paris.
- Distance traveled by light in a ______
 1/299,792,458 seconds.

In

THE <u>SECOND</u> IS DEFINED AS:

- 1/86,400 of the average solar _
- Frequency of the _____emitted my a cesium atom.

THE <u>KILOGRAM</u> IS DEFINED AS:

Mass of a small platinum-iridium metal cylinder kept
 at a controlled ______ and

DIMENSIONAL ANALYSIS

- A method of treating units as algebraic quantities, that can be
 - Use to see what your final unit should be.
 - EX:

CONVERTING UNITS

- Multiply by a form of one to change the ______ but not the ______
 - Convert to base unit first:_____
 - Put the ______with the ______
 - Units in "opposite locations" cancel

EX: CONVERT

• 5.9 km to m

• 47.8 pm to mm

• 5.56 ng to kg

SCIENTIFIC NOTATION

A way to write really _

numbers.

- Writes numbers as powers of 10.
- EX: 1,700 =
- EX: 0.0000079 =
- Make sure you know how to use scientific notation on your calculator.

SIGNIFICANT DIGITS

- The ______in a measurement (last digit for any given measurement is the uncertain digit).
 - Numbers believed to be correct
- Rules:
- 1) _____ digits are always significant.
 - EX: 8.954 = 4 sd
- 2) All ______ after the decimal are significant.
- EX: 5.3331000 = 8 sd
- 3) _____ between 2 other sig digs are always significant.
 - EX: 809.07 = 5 sd
- 4) Zeros used solely as _____ are not significant.
 - EX: 0.0000000005 = 1 sd

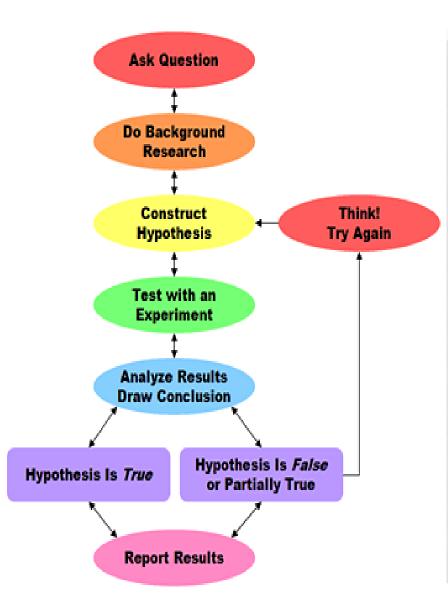
SIGNIFICANT DIGITS

- Scientific notation can help clear up any ambiguity when it comes to determining how many significant digits a value has.
- EX: 184, 000 could have 3,4,5, or 6 sd.
- 1.84000 x 10⁶ has 6 sd

STATE THE NUMBER OF SIGNIFICANT DIGITS IN EACH:

- 3021
- 7.8 x 10⁵
- 7.08 x 10⁵
- 7.80 x 10⁷
- 0.000007021
- 59.0000

- Determining the correct number of sd after performing a mathematical operation:
 - Add/Sub least _____ number
 - EX: 5.12 cm + 6.129 cm

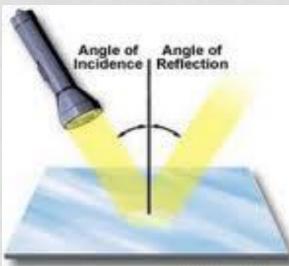

- Mult/Div least number of _____
- EX: 12.78 m x 1.23 m

A = 1.24 M B = 0.23 CM

• Which has more sig digits?

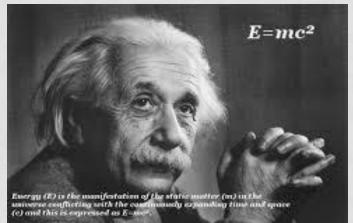
• Which is more precise?

A SCIENTIFIC METHOD:


SCIENTIFIC METHOD

the

- Experiments/Results must be ______
 - Other scientists must be able to ______
 experiment with similar results


SCIENTIFIC LAW

- A rule of nature that sums up ______
 to describe a ______
- Laws only describe _____ happens not _____ they happen.
- EX: Law of Reflection angle of incidence equals the angle of reflection.

SCIENTIFIC THEORY

- An _____ based on many observations supported by _____
- Best available ______for why things happen the way they do.
- EX: Einstein's Theory of Relativity

Granity is the some an acceleration and is the manifestation of expanding time and spece curring around static watter.

If you accelerate matter (m) to the speed of hight (c), time steps, your mass is infinite and your length is a

1.2 MEASUREMENT

MEASUREMENT

- A comparison between an _____ quantity and an ______standard.
 - EX: You measure your desk with a meter stick.

- Many measurements contain a certain amount of
 - A new measurement within the margin of uncertainty ______ the old measurement .

COMPARING RESULTS AND UNCERTAINTIES

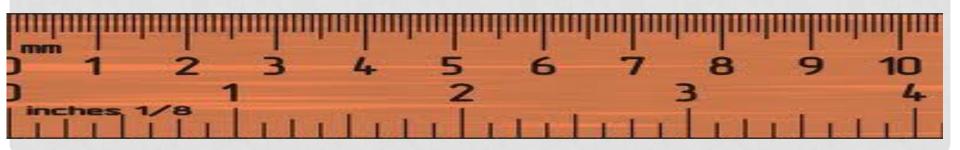
- Three students measure the length of a model car:
 - Student 1 average: 18.8 ± 0.3 cm
 - Student 2 average: 19.0 ± 0.2 cm
 - Student 3 average: 18.3 ± 0.1 cm
- Which are in agreement?

• Which are not in agreement?

PRECISION

- The degree of ______ of a measurement.
 - When dealing with multiple measurements, the smaller the variation between them, the more precise they are. (small ±)
- Which student was most precise?

• Which was least precise?

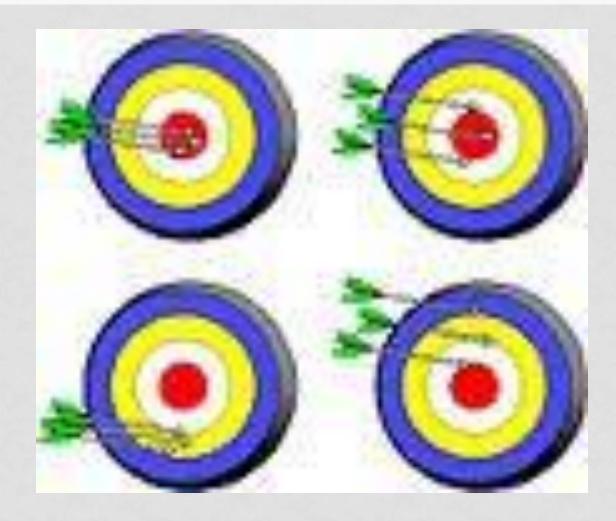

PRECISION

- To get a precise measurement, use a tool with the divisions possible.
- This will allow your measurement to be taken out to more _____.

PRECISION

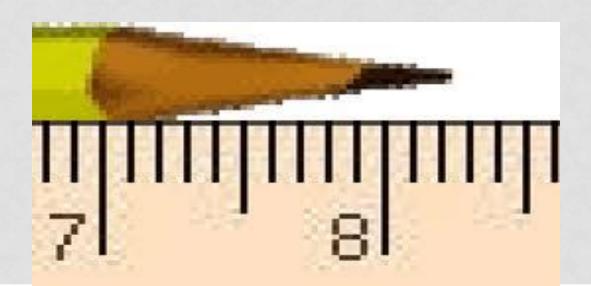
- Always measure to the _____ and then _____ the last digit.
 - A measurement can never be more precise _ used to measure it.
 - EX:
- The precision of a measurement is said to be ____ the smallest division of the tool.
 - Meter stick: ______divisions
 - Max range of error based on tool: ± ____

ACCURACY


- How well the results of an experiment agree with the _____ ("real") value.
- If the model car was actually 19.0 cm, which student was most accurate?

• Which was least accurate?

ACCURACY


- To make sure a measuring tool is accurate (even if it is precise), it must be _____.
 - Make sure it reads ______ when it should.

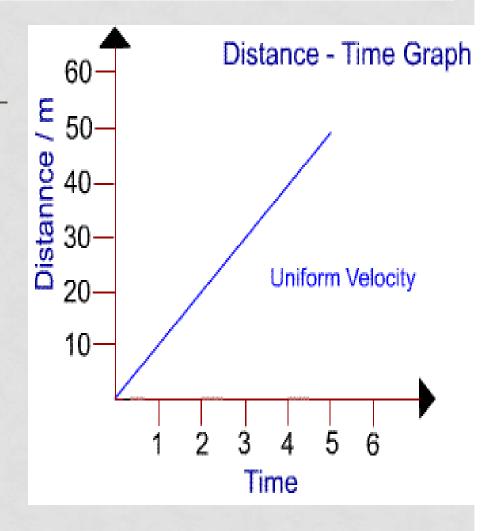
PRECISION VS ACCURACY

PARALLAX

- The apparent _____ in the position of an object when it is viewed from different _____.
 - Pay attention to the _____ at which you are reading a measurement. Read it from _____.

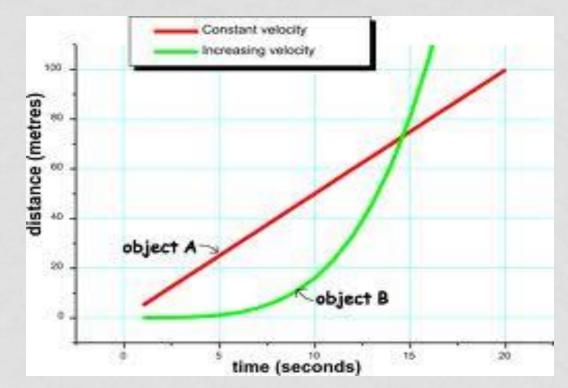
1.3 GRAPHING DATA

- Independent Variable the variable that is
 ______. The experimenter controls it
 directly.
- Dependent Variable depends on the variable.

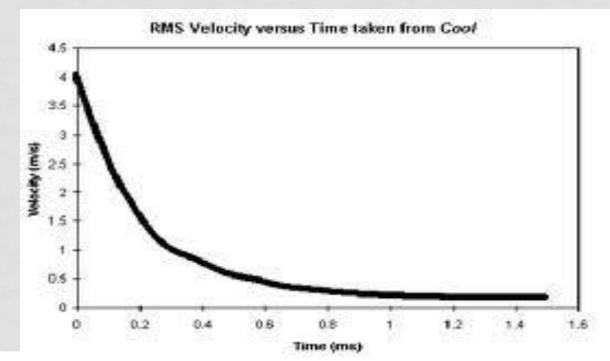

WHEN PLOTTING DATA:

- 1) Identify the independent and dependent variables.
 - Plot the independent variable on the horizontal _____ axis.
 - Plot the dependent variable on the vertical _____ axis.
- 2) Determine the _____ of the data and divide your axis accordingly.
- 3) Plot the data points and draw in the _____ line/smooth curve.

• 4) _____ and _____ the graph.


LINEAR RELATIONSHIPS

- A straight _____ graph.
- Variables are _ proportional.
- Equation:
 - Pay attention to the _____of the slope.
 - It often represents a


QUADRATIC RELATIONSHIP

- Graph is a _____
- One variable depends on the _____ of the other.
- Equation:

INVERSE RELATIONSHIP

- Graph is a _____.
- One variable depends on the _____ of the other.
- Equation: , where "a" is a constant.

- You can use graphs to make _
- Make sure your predictions are within reason.
- EX: Graphing length of a spring for different masses.
 - What limitations to prediction are there?