Acceleration Due to Gravity

- As you move farther from Earth
(as r becomes larger), the
acceleration
due to gravity is reduced .
- EX: 400 km above the Earth's surface, the acceleration due to gravity is $8.7 \mathrm{~m} / \mathrm{s}^{2}$.

How then, can this astronaut, who is in orbit 400 km above the Earth, feel "weightless"?

Weightlessness

- Remember - you only feel your weight when something is exerting a contact force on you
- EX: the floor / a chair
- If your chair or the floor were to be OR if they were to \qquad remored Earth at the same rate as you, you would feel weightless (your apparent weight would be 0)
\qquad
- Since a space shuttle and everything in it are in free fall (falling towards Earth) - the astronaut can experience

Astronauts In Orbit Watch this - great explanation!

Gravitational Field

- Gravity is a \qquad long
\qquad force
- No \qquad contact needed
Any object with a
\qquad is surrounded by a gravitational field, that always points
\qquad towards the center of the mass

Gravitational Field

- Gravitational field is an \qquad area in which

gravitational force can be experienced.

- Any mass within the gravitational field experiences a force caused by the interaction of its mass with the gravitational
\qquad .
- http://physics.bu.edu/~duffy/semester1/c17 field. $\underline{\mathrm{html}}$

Gravitational Field

- Gravitational field strength (g) is equal to the force experienced per unit mass in a gravitational field.

$$
g=\frac{F}{m} \longleftarrow \text { mass of object in field }
$$

- Units: N / kg which also equals $\mathrm{m} / \mathrm{s}^{2}$
- Note: This expression is the same as that of an acceleration_of a mass due to a force.
- EX: Earth's gravitational field strength is $9.8 \mathrm{~N} / \mathrm{kg}$, which is equal to the acceleration due to gravity on Earth. ($9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Gravitational Field

- To calculate gravitational field given only the mass of the center body (M) and the distance another mass is away (r):

$$
g=\frac{G M}{r^{2}}
$$

- Note: The gravitational field depends on the
mass of the object exerting it , not the mass of the object experiencing it
- Gravitational field is a Vector

