$$
7-2
$$

Using the Laws of Universal Gravitation

How Objects Get Into Orbit

- An object shot horizontally is a projectile - it will fall to the Earth in a parabolic path.
- The faster a projectile is shot horizontally, the father it will get horizontally.
- If a projectile is shot fast enough and high enough (to reduce air resistance) it will fall towards Earth at the same rate that the Earn's surface curves away
- Meaning the object would in orbit
* always falling towards Earth but not hitting it b|c Earth is round/curving away

.http://www.physicsclassroom.com/mm edia/vectors/sat.cfm

Speed of a Satellite Orbiting the Earth

$$
V=\sqrt{\frac{G m_{E}}{r}}
$$

$$
G=6.67 \times 10^{-11}
$$

$m=$ mass of center body
$r=$ orbital radius
(center to center distance)
$V=$ speed (in meters $/$ second)

Period of a Satellite Orbiting the Earth

$$
\begin{aligned}
& T=2 T \sqrt{\frac{r^{3}}{G m_{E}}} \\
& G=6.67 \times 10^{-11} \\
& m=\text { mass of center body } \\
& r=\text { orbital radius } \\
& \text { (center to center distance) } \\
& T=\text { period (in seconds) }
\end{aligned}
$$

Launching a Satellite

- Satellites are launched by rockets that have accelerated them to a fast that will allow them to \qquad achieve orbit .
- Since F = ma, a more Massive satellite would require more \qquad to accelerate it.
- Therefore, the mass of a satellite is limited by the rocket that will be used to launch it.
- http://www.youtube.com/watch?v=mbeoS0o fNw

Uses of a Satellite

- Provides images of Earth's surface that are used to:
- Create maps
- Study land use
- Monitor resources
- Monitor global changes

EX:

- Engineers are planning to place the International Space Station (ISS) into orbit at an altitude of 450 km above the Earth's surface. What would be the orbital speed and period of the ISS?

$$
\begin{array}{rlrl}
m_{E} & =5.97 \times 10^{24} \mathrm{~kg} & T & =2 \pi \sqrt{\frac{\left(6.83 \times 10^{6}\right)^{3}}{\left(6.67 \times 10^{111}\right)\left(5.97 \times 10^{24}\right)}}
\end{array} \begin{aligned}
r & =r_{E}+450 \mathrm{~km} \\
& =6.38 \times 10^{6} \mathrm{~m}+450,000 \mathrm{~m} \\
r & =6.83 \times 10^{6} \mathrm{~m}
\end{aligned} \quad V=\sqrt{\frac{6.67 \times 10^{-11}\left(5.97 \times 10^{24}\right)}{6.83 \times 10^{6}}}=\begin{array}{ll}
7635.5 \mathrm{mec}
\end{array}
$$

