Chapter 7 Gravitation

$$
7-1
$$

Planetary Motion and Gravitation

Johannes Kepler

- Believed that the sun exerted a force on all of the planets and that the sun was the center of the system.
- Discovered three laws that govern the motion of every planet and every \qquad

Kepler's $1^{\text {st }}$ Law

- Planets \qquad orbit in
\qquad elliptical paths with the Sun at one focus

Kepler's $2^{\text {nd }}$ Law

- An imaginary line from the sun to a
\qquad sweeps out equal areas equal time intervals.
- Meaning - planets move faster when they are closer to the Sun and when they are farther
from the Sun.

Keplers Second Law
The line from planet to Sun sweeps out equal area in equal time.
For example, if the time taken for the planet to get from A to B is equal to the time for the planet to get from H to I , then the crosshatched areas are equal.

This law is just a consequence of the law of the conservation of angular momentum.

* All equal areas covered
in equal times

Kepler's $3^{\text {rd }}$ Law

- The squared quantity of the period of object A divided by the period of object B is equal to the cubed quantity of object A's average distance from the Sun divided by object B's average distance from the Sun.

$$
\left(\frac{T_{A}}{T_{B}}\right)^{2}=\left(\frac{r_{A}}{r_{B}}\right)^{3} \quad \begin{aligned}
& * T=\text { period (time for } 1 \text { revolution) } \\
& * r=\text { orbital radius (center to center distance) }
\end{aligned}
$$

Kepler's $3^{\text {rd }}$ Law

- The third law relates the motion of \qquad
\qquad bodies about a \qquad center body .
- EX: 2 planets around the sun
- EX: The moon and a satellite around the Earth
(1. EX: Galileo measured the orbital sizes of Jupiter's moons using the diameter of Jupiter as a unit of measure. He found that Io, the closest moon to Jupiter, had a period of 1.8 days and was 4.2 units from the center of Jupiter. Callisto, the fourth moon from Jupiter, had a period of 16.7 days. Using the same units that Galileo used, predict Callisto's distance from Jupiter.
(®. EX: Europa, a satellite of Jupiter, has a period of 3.55 days. How many units is its radial distance?
(1)

$$
\begin{aligned}
& T_{I}=1.8 \text { days } \\
& r_{I}=4.2 \text { units } \\
& T_{C}=16.7 \text { days } \\
& r_{C}=?
\end{aligned}
$$

$\left(\frac{1.8}{16.7}\right)^{2}=\left(\frac{4.2}{r_{c}}\right)^{3}$

* Note: Raise each side to the $1 / 3$ power or cube root it to get your variable out of the 3rd power

$$
r_{c}=18.5 \text { units }
$$

(2)

$$
\begin{array}{lr}
T_{E}=3.55 \text { days } \\
r_{E}=? & \left(\frac{1.8}{3.55}\right)^{2}=\left(\frac{4.2}{r_{E}}\right)^{3} \\
\text { * Use Io info } \\
\text { above } & r_{E}=6.6 \text { units }
\end{array}
$$

Newton and Planetary Motion

- Gravitational Force - the force of attraction between two objects.
- The force acts in the \qquad of the line between the centers of the two objects.
- The force is inversely proportional to the square of the distance between the centers of the planet and the Sun: $F \propto \frac{1}{d^{2}} \quad d \uparrow F \downarrow$
- The force is directly proportional to the masses of the two objects: $F \propto m \quad m \uparrow ~ F \uparrow$

Law of Universal Gravitation

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}} \quad \begin{aligned}
& G=6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}} \\
& r=\begin{array}{l}
\text { orbital radius } \\
\text { (center to center distance) }
\end{array}
\end{aligned}
$$

Period of a Planet Orbiting the Sun

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{r^{3}}{G m}} \\
& G=6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}} \\
& r= \text { orbital radius } \\
& \quad \begin{array}{l}
\text { center to center distance) }
\end{array} \\
& m= \text { mass of the center body } \\
& \text { (object being orbited not } \\
& \text { object orbiting) }
\end{aligned}
$$

Universal Gravitational Constant

- $\mathrm{G}=6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{mo}^{2}}$
- Henry Cavendish calculated this constant in 1798 by finding the gravitational force between two lead spheres, with a known mass and a measured distance between there centers
- Once G was known, the Earth's mass could be calculated, the Sun's mass could be calculated, and the gravitational force between any two objects can be calculated.

