Chapter 7
Gravitation

$$
7-1
$$

Planetary Motion and Gravitation

Johannes Kepler

- Believed that the on all of the planets and that the sun was the of the system.
- Discovered three laws that the motion of every every \qquad

Kepler's $1^{\text {st }}$ Law

- Planets

Kepler's $2^{\text {nd }}$ Law

- An imaginary line from the ___to a
\qquad sweeps out intervals.
- Meaning - planets move \qquad they are
to the Sun and when they are \qquad from the Sun.

Keplers Second Law
The line from planet to Sun sweeps out equal area in equal time.
For example, if the time taken for the planet to get from A to B is equal to the time for the planet to get from H to I , then the crosshatched areas are equal.

This law is just a consequence of the law of the conservation of angular momemtum.

Kepler's $3^{\text {rd }}$ Law

- The squared quantity of the period of object A divided by the period of object B is equal to the cubed quantity of object A's average distance from the Sun divided by object B's average distance from the Sun.

Kepler's $3^{\text {rd }}$ Law

- The third law relates the motion of about a \qquad .
. EX:
. EX:
- EX: Galileo measured the orbital sizes of Jupiter's moons using the diameter of Jupiter as a unit of measure. He found that Io, the closest moon to Jupiter, had a period of 1.8 days and was 4.2 units from the center of Jupiter. Callisto, the fourth moon from Jupiter, had a period of 16.7 days. Using the same units that Galileo used, predict Callisto's distance from Jupiter.
- EX: Europa, a satellite of Jupiter, has a period of 3.55 days. How many units is its radial distance?

Newton and Planetary Motion

- Gravitational Force - the
between two objects.
- The force acts in the \qquad of the line of the two objects.
- The force is \qquad to the between the centers
of the planet and the Sun:
- The force is \qquad to the \qquad of the two objects:

Law of Universal Gravitation

Crefit Pearson

Period of a Planet Orbiting the Sun

Universal Gravitational Constant

- $G=$
- Henry Cavendish calculated this constant in 1798 by finding the gravitational force between two lead spheres, with a known mass and a measured distance between there centers
- Once G was known, the Earth's mass could be calculated, the Sun's mass could be calculated, and the gravitational force between any two objects can be calculated.

$$
7-2
$$

Using the Laws of Universal Gravitation

How Objects Get Into Orbit

- An object shot horizontally is a projectile - it will fall to the Earth in a parabolic path.
- The faster a projectile is shot horizontally, the father it will get horizontally.
- If a projectile is shot \qquad and it will at the same rate that the \qquad .
- Meaning the object would

.http://www.physicsclassroom.com/mm edia/vectors/sat.cfm

Speed of a Satellite Orbiting the Earth

Period of a Satellite Orbiting the Earth

Launching a Satellite

- Satellites are launched by \qquad that have \qquad them to a \qquad that will allow them to \qquad .
- Since F = ma, a more \qquad satellite would require more \qquad to accelerate it.
- Therefore, the mass of a satellite is limited by the rocket that will be used to launch it.
- http://www.youtube.com/watch?v=mbeoS0o fNw

Uses of a Satellite

- Provides images of Earth's surface that are used to:
- Create maps
- Study land use
- Monitor resources
- Monitor global changes

EX:

- Engineers are planning to place the International Space Station (ISS) into orbit at an altitude of 450 km above the Earth's surface. What would be the orbital speed and period of the ISS?

Acceleration Due to Gravity

- As you move
(as r becomes larger), the \qquad .
- EX: 400 km above the Earth's surface, the acceleration due to gravity is $8.7 \mathrm{~m} / \mathrm{s}^{2}$.

How then, can this astronaut, who is in orbit 400 km above the Earth, feel "weightless"?

Weightlessness

- Remember - you only when something is exerting a \qquad on you
- EX:
- If your chair or the floor were to be OR if they were to towards Earth at the same rate as you, you would feel
\qquad
\qquad
- Since a space shuttle and everything in it
- the astronaut can experience
- Astronauts In Orbit

Gravitational Field

- Gravity is a
\qquad force
- No \qquad needed
- Any object with a is surrounded by a gravitational field, that always points

\qquad

Gravitational Field

- Gravitational field is a in which can be experienced.
- Any mass within the gravitational field experiences a ___ caused by the interaction of its mass with \qquad at that \qquad .
- http://physics.bu.edu/~duffy/semester1/c17 field. $\underline{\mathrm{html}}$

Gravitational Field

- Gravitational field strength (g) is equal to the experienced per in a gravitational field.
- Units: N / kg which also equals $\mathrm{m} / \mathrm{s}^{2}$
- Note: This expression is the \qquad -
- EX: Earth's gravitational field strength is \qquad , which is equal to the \qquad on Earth.

Gravitational Field

- To calculate gravitational field given only the mass of the center body (M) and the distance another mass is away (r):
- Note: The gravitational field depends on the
\qquad of the \qquad , not the of the \qquad .
- Gravitational field is a \qquad .

