

Johannes Kepler

- Believed that the _____ exerted a _____ on all of the planets and that the sun was the ______ of the system.
- Discovered three laws that ______ and the motion of every ______ and every ______.

Keplers Second Law

The line from planet to Sun sweeps out equal area in equal time.

For example, if the time taken for the planet to get from A to B is equal to the time for the planet to get from H to I, then the crosshatched areas are equal.

Kepler's second law (Fig. 4-15)

N

0

This law is just a consequence of the law of the conservation of angular momentum.

Κ н Sun Planet A G F E B D C

For use with Fix: Astronomy: Journey to the Cosmic Frontier Copyright 1995, Mosby-Year Book, Inc.

Kepler's 3rd Law

• The squared quantity of the period of object A divided by the period of object B is equal to the cubed quantity of object A's average distance from the Sun divided by object B's average distance from the Sun.

Kepler's 3rd Law

- The third law relates the motion of _______ about a ______
- EX:

EX:

- EX: Galileo measured the orbital sizes of Jupiter's moons using the diameter of Jupiter as a unit of measure. He found that Io, the closest moon to Jupiter, had a period of 1.8 days and was 4.2 units from the center of Jupiter. Callisto, the fourth moon from Jupiter, had a period of 16.7 days. Using the same units that Galileo used, predict Callisto's distance from Jupiter.
- EX: Europa, a satellite of Jupiter, has a period of 3.55 days. How many units is its radial distance?

Newton and Planetary Motion • Gravitational Force – the between two objects. • The force acts in the _____ of the line of the two objects. • The force is to the between the centers of the planet and the Sun: • The force is to the of the two objects:

Period of a Planet Orbiting the Sun

hora un a tra

Universal Gravitational Constant

- G =
- Henry Cavendish calculated this constant in 1798 by finding the gravitational force between two lead spheres, with a known mass and a measured distance between there centers
- Once G was known, the Earth's mass could be calculated, the Sun's mass could be calculated, and the gravitational force between any two objects can be calculated.

Using the Laws of Universal Gravitation

7-2

How Objects Get Into Orbit

- An object shot horizontally is a projectile it will fall to the Earth in a parabolic path.
- The faster a projectile is shot horizontally, the father it will get horizontally.
- If a projectile is shot _____ and

it will ______ at the same rate that the ______.

Speed of a Satellite Orbiting the Earth

hora un a tra

Period of a Satellite Orbiting the Earth

Launching a Satellite

Satellites are launched by _____ that have _____ them to a _____ that will allow them

to

- Since F = ma, a more ______ satellite would require more ______ to accelerate it.
- Therefore, the mass of a satellite is limited by the rocket that will be used to launch it.
- http://www.youtube.com/watch?v=mbeoS0o_fNw

Uses of a Satellite

- Provides images of Earth's surface that are used to:
- Create maps
- Study land use
- Monitor resources
- Monitor global changes

EX:

• Engineers are planning to place the International Space Station (ISS) into orbit at an altitude of 450 km above the Earth's surface. What would be the orbital speed and period of the ISS?

Acceleration Due to Gravity

- As you move ______ (as r becomes larger), the _
 - is

• EX: 400 km above the Earth's surface, the acceleration due to gravity is 8.7 m/s².

• How then, can this astronaut, who is in orbit 400 km above the Earth, feel "weightless"?

Weightlessness

- Remember you only _____
 when something is exerting a _____
 on you
- EX:

- Since a space shuttle and everything in it
 - the astronaut can experience
- Astronauts In Orbit

- Gravity is a ______ force
 - No ______ needed
- Any object with a

 is surrounded
 by a gravitational field,
 that always points

- Gravitational field is a ______ in which ______ can be experienced.
- Any mass within the gravitational field experiences a _____ caused by the interaction of its mass with _____ at that

<u>http://physics.bu.edu/~duffy/semester1/c17_field.</u>
 <u>html</u>

• Gravitational field strength (g) is equal to the ______ experienced per ______

in a gravitational field.

- Units: N/kg which also equals m/s²
- Note: This expression is the _____ as that of an _____ of a mass due to a _____.
- EX: Earth's gravitational field strength is _____ which is equal to the ______ on Earth.

• To calculate gravitational field given only the mass of the center body (M) and the distance another mass is away (r):

- Note: The gravitational field depends on the _______ of the ______, not the ______, not the _______
- Gravitational field is a