Chapter 8

Rotational Motion

Describing Rotational Motion

Angular Displacement

- As an object rotates, the is called
- Counterclockwise:
- Clockwise:
- Angle can be measured in
- 1 Revolution =
- KNOW HOW TO CONVERT BETWEEN THE THREE
-EX:

EX: In 6 hours, Earth rotates through 90° or $\pi / 2$ radians

Distance a Rotating Object Travels

o For rotation through an \qquad , a point at a from the center moves through a distance of:

- θ needs to be in

Angular Velocity

o Angular velocity, ω, is equal to the , divided by the required to malke the rotation.

- Units: rad/s
oSign depends on direction

Angular and Linear Velocity

- In a \qquad , all points at the \qquad
- However, different points on the body may different linear distances, but still rotate through the
- Meaning: Points on the same object can have the but
- Given ω, to find linear velocity:

Angular Acceleration

o Angular acceleration, α, is equal to the divided by the to make that change.

- Units: rad/s²
o Given angular acceleration, to find linear acceleration:

A record player's needle is 6.5 cm from the center of a $45-\mathrm{rpm}$ record. What is the velocity of the needle?

- The rotational velocity of a merry-goround is increased at a constant rate from $1.5 \mathrm{rad} / \mathrm{s}$ to $3.5 \mathrm{rad} / \mathrm{s}$ in a time of 9.5 s . What is the rotational acceleration of the merry-go-round?

Rotational Dynamics

Rotation

o Rotating an object depends on:

- The of the
- The \qquad of the
- The \qquad of the
o EX: What is the easiest way to open a door?

Lever Arm

o Lever arm - the
from the to the point where the \qquad $-$

- EX: If you push a door at a right angle, the lever arm is the distance from the hinges to where you are pushing.
- EX: If you rotate a pulley with a string, the lever arm is the radius of the pulley.

Lever Arm

o To find lever arm:

- Extend the until it forms a \qquad with a line from the center of rotation.
- This distance is the lever arm.
- L is the lever arm

- r is the distance from the axis of rotation
- θ is the angle between the force and r

Lever Arm

Foces has maximem effestivenest in prodiving torque titis exerted perpendiculy to the wrentich	

Three examples of torque exerted on a wrench of length 20 cm .

Torque

- Torque (τ) - a of how effectively a
- Torque is the product of the force and the lever arm:
\circ Units $=\mathrm{N} \cdot \mathrm{m}$
- A bolt on a car engine needs to be tightened with a torque of 35 Nm . You use a 25 cm long wrench and pull on the end of the wrench at an angle of 75° from the perpendicular. How long is the lever arm and how much force do you have to exert?

Net Torque

- Net torque - the of
being applied to an object.
- Direction of Torque: The way the \qquad
\bigcirc

torques but
 = NO rotation

oEX: Seesaw

EX:

Cara (56 kg) and Ally (52 kg) want to balance on a seesaw. If Cara sits 1 m from the pivot point, where should All sit?

Moment of Inertia

- In order to rotate an object, both the and the are important.
- Moment of Inertia - the to
- For a Point Mass:
- Units: kg•m²

Moment of Inertia

Objects that have their mass distributed from the axis of
rotation will have a moment of inertia.

- Meaning
- EX:
- A simplified model of a twirling baton is a thin rod with two round objects at each end. The length of the baton is 0.65 m , and the mass of each object is 0.30 kg . Find the moment of inertia of the baton if it is rotated about its midpoint. Then find the moment of inertia if it is rotated around one end. Which is greater? Neglect the mass of the rod.

Newton's $2^{\text {nd }}$ Law for Rotational Motion

- Remember: F=ma
o For Rotational Motion:
o Angular Acceleration is directly proportional to the and inversely proportional to the
- A solid steel wheel has a mass of 15 kg and a diameter of 0.44 m . It starts at rest. You want to make it rotate at $8 \mathrm{rev} / \mathrm{s}$ in 15 s.
- What torque must be applied to the wheel?
- If you apply the torque by wrapping a strap around the outside of the wheel, how much force should you exert on the strap?

8.3

Equilibrium

Center of Mass

- Center of Mass - the
that moves in the same way that a would move.

Center of Mass

- All freely will about an axis that goes through their
ohtto://www.youtube.com/watch?v=ksGs BAWOX

Center of Mass

- The
of an objects acts at its
- When an object is
at
its \qquad
there is
acting on
it.

- If the center of mass is

- EX: The middle of a meter stick.

To Find the Center of Mass:

huttp://www.techunologystudelent.c

 on/forcmon/cengrav l. .htinl

Center of Mass

- The center of mass for a person standing with arms down is a few centimeters below the naval.
- However, the center of mass of a person
 is not fixed.

Center of Mass and Sta.bility

- Most objects have a due to their \qquad
- Meaning:
- If an object is rotated/tilted through a certain angle the torque due to its weight will bring it back to its natural position without causing it to tip over.
- In order to \qquad a stable object, the force applied must rotate it so that the object's
- An object is
if an external is required to
- Stable objects:
- Have a \qquad
- Have a \qquad
- Because:
- They require a
- EX: A racecar is more stable than an SUV

Static Equilibrium

- An object is in static equilibrium if both its and

are

 .o For this to happen:

- It must be in translational equilibrium:
- It must be in rotational equilibrium:

○ A 5.8 kg ladder, 1.8 m long, rests on two sawhorses. Sawhorse A is 0.6 m from one end of the ladder, and sawhorse B is 0.15 m from the other end of the ladder. What force does each sawhorse exert on the ladder?

