Chapter 8

Rotational Motion

8.1 Describing Rotational Motion

Angular Displacement

- As an object rotates, the ______.is called _____.
 - Counterclockwise:
 - Clockwise:
- Angle can be measured in _____ or
 - 1 Revolution =
 - KNOW HOW TO CONVERT BETWEEN THE THREE
 - EX:

EX: In 6 hours, Earth rotates through 90° or $\pi/2$ radians

Distance a Rotating Object Travels

- For rotation through an _______, a point at a ______ from the center moves through a distance of:
 - ullet needs to be in _____

Angular Velocity

• Angular velocity, ω , is equal to the ______, divided by the ______ required to make the rotation.

- Units: rad/s
- Sign depends on direction

Angular and Linear Velocity

In a	, all points	at
the		
However, d	ifferent points on the body	may
	different linear distar	nces,
but still rota	ate through the	
• Meaning: P	oints on the same object ca	an
have the	but	
	· .	
$\overline{\circ}$ Given ω , to	find linear velocity:	

Angular Acceleration

Angular acceleration, α, is equal to the _____ divided by the _____ to make that change.

- Units: rad/s²
- Given angular acceleration, to find linear acceleration:

• A record player's needle is 6.5 cm from the center of a 45-rpm record. What is the velocity of the needle?

• The rotational velocity of a merry-go-round is increased at a constant rate from 1.5 rad/s to 3.5 rad/s in a time of 9.5 s. What is the rotational acceleration of the merry-go-round?

8.2 Rotational Dynamics

Rotation

Rotating an object depends on:

• The _____ of the ____

• The ____ of the ____

• The _____ of the _____

• EX: What is the easiest way to open a door?

Lever Arm

Lever arm – the ______ to the point where the ______.

• EX: If you push a door at a right angle, the lever arm is the distance from the hinges to where you are pushing.

 EX: If you rotate a pulley with a string, the lever arm is the radius of the pulley.

Lever Arm

To find lever arm:

- Extend the ______until it forms a _____with a line from the center of rotation.
- This distance is the lever arm.
 - L is the lever arm
 - r is the distance from the axis of rotation
 - θ is the angle between the force and r

Lever Arm

Torque

- Torque (τ) a _____ of how effectively a _____.
- Torque is the product of the force and the lever arm:

 \bullet Units = $\overline{N} \cdot m$

• A bolt on a car engine needs to be tightened with a torque of 35 Nm. You use a 25 cm long wrench and pull on the end of the wrench at an angle of 75° from the perpendicular. How long is the lever arm and how much force do you have to exert?

Net Torque

- Net torque the _____ of ____being applied to an object.
 - Direction of Torque: The way the ______
- _____ torques but _____
 - ____ = NO rotation
- EX: Seesaw

• Cara (56 kg) and Ally (52 kg) want to balance on a seesaw. If Cara sits 1 m from the pivot point, where should All sit?

Moment of Inertia

- In order to rotate an object, both the
 ____ and the
 are important.
- Moment of Inertia the ______to
 - For a Point Mass:
- Units: kg·m²

Moment of Inertia

Objects that have t	heir mass distributed
	from the axis of
rotation will have a	
moment of inertia.	
• Meaning	

• EX:

 A simplified model of a twirling baton is a thin rod with two round objects at each end. The length of the baton is 0.65 m, and the mass of each object is 0.30 kg. Find the moment of inertia of the baton if it is rotated about its midpoint. Then find the moment of inertia if it is rotated around one end. Which is greater? Neglect the mass of the rod.

Newton's 2nd Law for Rotational Motion

- Remember: F=ma
- For Rotational Motion:

• Angular Acceleration is directly proportional to the _____ and inversely proportional to the

- A solid steel wheel has a mass of 15 kg and a diameter of 0.44 m. It starts at rest.
 You want to make it rotate at 8 rev/s in 15 s.
 - What torque must be applied to the wheel?
 - If you apply the torque by wrapping a strap around the outside of the wheel, how much force should you exert on the strap?

8.3 Equilibrium

Center of Mass – the _______
 that moves in the same way that a ______
 would move.

• All freely _____ will _____ about an axis that goes through their

http://www.youtube.com/watch?v=ksGs

BAWOXM

- The ______of an objects acts at its _____
- When an object is

its _____,
there is

acting on

it.

If the center of mass is _______, it is the ______of the object.

• EX: The middle of a meter stick.

To Find the Center of Mass: http://www.technologystudent.c om/forcmom/cengravl.html

- The center of mass for a person standing with arms down is a few centimeters below the naval.
- However, the center of mass of a person is not fixed.

Center of Mass and Stability

Most objects ł	nave a	
due to their		

- Meaning:
 - If an object is rotated/tilted through a certain angle the torque due to its weight will bring it back to its natural position without causing it to tip over.
 - In order to _____ a stable object, the force applied must rotate it so that the object's

An object is	if an ext	ternal
	is required to	
Stable objects:		
• Have a		
• Have a		
• Because:		
They require a		_ for the
	to go	
• FX: A racecar is m	ore stable than an SII	V
 Have a Have a Because: They require a 	to go ore stable than an SU	

Static Equilibrium

- An object is in static equilibrium if both its _____ and ____are _____
- For this to happen:
 - It must be in translational equilibrium:

• It must be in rotational equilibrium:

• A 5.8 kg ladder, 1.8 m long, rests on two sawhorses. Sawhorse A is 0.6 m from one end of the ladder, and sawhorse B is 0.15 m from the other end of the ladder. What force does each sawhorse exert on the ladder?

