Chapter 5
 Displacement and Forces in Two Dimensions

- Vectors have both and
- Vectors must be added using
\qquad -
- You can add vectors
 long as you . _ their

Measuring Angles

- GEOGRAPHICAL:
- MATHEMTATICAL:

Vector Direction Examples

- $35 \mathrm{~m} / \mathrm{s}, 40^{\circ} \mathrm{E}$ of N
- $10 \mathrm{~N}, 210^{\circ}$

Resultant Vector

- The
- Always drawn from the to the
- Direction should always be measured between the ___ and the
\qquad

$$
\begin{aligned}
11^{2}+11^{2} & =\mathrm{R}^{2} \\
242 & =\mathrm{R}^{2} \\
15.6 & =\mathrm{R}
\end{aligned}
$$

Adding Vectors Method 1:

1. Scaled Vector Diagram/Graphically

- Decide on a
- Using a \qquad to measure the \qquad and a to measure draw the vectors tip to tail.
- Draw the \qquad from the \qquad of the first to the ____ of the last vector.
- Use a ruler to measure the \qquad of the resultant vector. Convert using \qquad .
- Use a protractor to measure the \qquad

Adding Vectors Method 2:

1. Mathematical Method

- If the two vectors being added are at
the magnitude can be found using the
$\sin \Theta=\frac{11 \mathrm{~km}}{15.6 \mathrm{~km}}=0.7051$
and the direction can be found using
$\Theta=\sin ^{-1}(0.7051)=45^{\circ}$
- If the two vectors being added are the magnitude can be found using the and the direction can be found using \qquad

Trig Review:

Trig Functions

Law of Cosines

Law of Sines

EX:

Add these vectors.

- $2.0 \mathrm{~m} / \mathrm{s}, 90 \mathrm{deg}$
- $7.0 \mathrm{~m} / \mathrm{s}, 0 \mathrm{deg}$

EX:

Add the following vectors.
15 km South
13 km East

Examples:

1. A person walks 100 m N and loses all sense if direction. Without knowing the direction, she walks 100 m again. Draw a vector representation and determine the range of her displacement.
2. You are traveling from SMCC to Jackson for the football game. You travel 30 km west, 20 km north, and 10 km west. Find your displacement (magnitude and direction) both graphically and mathematically.
3. A person jogs 15 km west and then turns to the right at a 45 degree angle and continues to run 25 more kilometers. Find the resultant vector for the jogger.

Components of a Vector - the

that make up the

The plane's northwest displacement is equivalent to a northward plus a westward displacement.

Components

- You can use to find the components.

*Be careful if the angle is bigger than ___ degrees. You may have to use a to find the components.

Method 3: Vector

 Resolution/Components
Two or more vectors can be added by:

- Resolving each vector into its
- ___ all the x-components to form the

$$
R x=A_{x}+B_{x}+C_{x} \cdots
$$

- ___ all the y-components to form the

$$
R y=A_{y}+B_{y}+C_{y} \ldots
$$

- Use the to find the of the
resultant R.

$$
R^{2}=R_{x}{ }^{2}+R_{y}^{2}
$$

- Use to
find the of R.

Examples:

A bus travels 23 km on a straight road that is $30^{\circ} \mathrm{N}$ of E . What are east and north components of its displacement?

EX:

Add the following three vectors using the component method: A is 4 m south, B is 7.3 m northwest, C is $6 \mathrm{~m} 30^{\circ}$ south of west.

Example:

You're a pilot \& are instructed to go around a massive thunderstorm. The control tower tell you take a detour \& follow these 3 paths : $100 \mathrm{~km}, 45^{\circ} \mathrm{N}$ of E , $65 \mathrm{~km}, 10^{\circ} \mathrm{S}$ of E
$20 \mathrm{~km}, 5^{\circ} \mathrm{S}$ of E

What is the plane's displacement from where it began it's detour?

FRICTION

friction force: the force

exerted on
when the objects are in
EX:

- $\mu=$ "mu" =
- F_{f} is proportional to the force

FRICTION

 frictionforce: the force exerted on one surface by another surface when there is between the two surfaces.
EX:

FRICTION

- Eventually there is a to this static friction force - once the is than the
, the object will begin to
- Until this point, exactly the -
- Maximum Static Friction Force:

FRICTION

- Besides the friction also depends on the that are in contact.
- Different surfaces have
- Table p. 317

EX: You push a 25 kg wooden box across a wooden floor at a constant speed of $1 \mathrm{~m} / \mathrm{s}$. How much force do you exert on the box?

EX:

A small child is dragging a heavy, rubbersoled shoe by its laces across a sidewalk at a constant speed of $0.35 \mathrm{~m} / \mathrm{s}$. If the shoe has a mass of 1.56 kg , what is the horizontal component of the force exerted by the child? $\mu=0.65$

EX:

- If the child pulls with an extra 2 N in the horizontal direction, what will be the acceleration of the shoe?

PH Ch 4 Vector

Inclined Planes

Inclined Plane

The force of acts in the direction.

The
 force acts
in a direction to the surface.

Components

Analyzing forces on inclined planes will involve resolving the into \qquad "

- one
to the surface:
- one
to the surface:
The \qquad force is the force that can cause an object to

Forces on an Inclined Plane

The
always
the angle between and -
Use
to find the components.

Practice

Diagram A

$m=1000 \mathrm{~kg}$
$\mathrm{B}=\ldots \mathrm{m} / \mathrm{s} / \mathrm{s}$
$F_{\text {net }}=\longrightarrow \mathrm{N}$

Diagram B

$$
\begin{aligned}
& m=1000 \mathrm{~kg} \\
& \mathrm{a}=\ldots \mathrm{m} / \mathrm{s} / \mathrm{s} \\
& F_{\text {net }}= \\
& \text { _ } \mathrm{N}
\end{aligned}
$$

Example

A trunk weighing 562 N is resting on a plane inclined 30° above the horizontal. Find the normal and frictional forces.

Example

A 62 kg person on skis is going down a hill sloped at $37{ }^{\circ}$. The coefficient of kinetic friction between the skis and the snow is 0.15 . How fast is the skier going 5
 s after starting from rest?

Equilibrant

Equilibrant - a
 \qquad that puts an object in

To find the equilibrant:

- Find the
of all the forces on the object.
- The equilibrant is the
but

EX: What is the equilibrant for an 8 N force applied at 0°, a 6 N force applied at 90°, and a 7 N force applied at 60 ?

EX: What is the tension in each cable?

