Chapter 5 Displacement and Forces in Two Dimensions

Vector Direction Examples

•35 m/s, 40° E of N

• 10 N, 210°

Resultant Vector

- The _
- Always drawn from the ______.
- Direction should always be measured between the _____ and the

5

Adding Vectors Method 1:

- 1. Scaled Vector Diagram/Graphically
 - Decide on a ______
 - Using a _____ to measure the _____ and a _____ to measure _____ draw the vectors tip to tail.
 - Draw the _____ from the _____ of the first to the _____ of the last vector.
 - Use a ruler to measure the _____ of the resultant vector. Convert using _____.
 - Use a protractor to measure the ______

Adding Vectors Method 2:

- 1. Mathematical Method
 - If the two vectors being added are at

the magnitude can be found using the

and the direction can be found using _____

$$\Theta = sin^{-1}(0.7051) = 45^{\circ}$$

 If the two vectors being added are ______, the magnitude can be found using

using _

Trig Review:

Trig Functions

Law of Cosines

Law of Sines

Add these vectors.

- 2.0 m/s, 90 deg
- 7.0 m/s, 0 deg

Add the following vectors. 15 km South 13 km East

1. A person walks 100m N and loses all sense if direction. Without knowing the direction, she walks 100m again. Draw a vector representation and determine the range of her displacement.

2. You are traveling from SMCC to Jackson for the football game. You travel 30 km west, 20 km north, and 10 km west. Find your displacement (magnitude and direction) both graphically and mathematically.

3. A person jogs 15 km west and then turns to the right at a 45 degree angle and continues to run 25 more kilometers. Find the resultant vector for the jogger.

Components of a Vector – the

that make up the

The plane's northwest displacement is equivalent to a northward plus a westward displacement.

Components

• You can use _____ to find the components.

*Be careful if the angle is bigger than ____degrees. You may have to use a _____to find the components.

Method 3: Vector Resolution/Components Two or more vectors can be added by:

Resolving each vector into its _____

____all the x-components to form the

$$R_x = A_x + B_x + C_x \dots$$

_____ all the y-components to form the

$$Ry = A_y + B_y + C_y \dots$$

- Use the _____ to find the _____ of the _____ of the resultant R. $R^2 = R_x^2 + R_y^2$
- Use ______to find the ______
 of R.

Examples:

A bus travels 23 km on a straight road that is 30° N of E. What are east and north components of its displacement?

EX:

Add the following three vectors using the component method: A is 4 m south, B is 7.3 m northwest, C is 6 m 30° south of west.

Example:

You're a pilot & are instructed to go around a massive thunderstorm. The control tower tell you take a detour & follow these 3 paths :

- 100 km, 45° N of E ,
- 65 km, 10° S of E
- $20 \text{ km}, 5^{\circ}$ S of E

What is the plane's displacement from where it began it's detour?

friction force: the force

EX:

F_f is proportional to the force _

friction

force: the force exerted on one surface by another surface when there is ____between

the two surfaces.

EX:

- Eventually there is a _____to this static friction force once the _____is ____than the _____, the object will begin to
- Until this point, _____ exactly the _____.

• Maximum Static Friction Force:

- Besides the _____,
 friction also depends on the _____
 that are in contact.
- Different surfaces have

• Table p.317

EX: You push a 25 kg wooden box across a wooden floor at a constant speed of 1 m/s. How much force do you exert on the box?

EX:

A small child is dragging a heavy, rubbersoled shoe by its laces across a sidewalk at a constant speed of 0.35 m/s. If the shoe has a mass of 1.56 kg, what is the horizontal component of the force exerted by the child? $\mu = 0.65$

EX:

 If the child pulls with an extra 2 N in the horizontal direction, what will be the acceleration of the shoe?

Inclined Planes

Components

Analyzing forces on inclined planes will involve resolving the ______ into _____

- one ______ to the surface: ____
- one ______ to the surface: ____
- The ______ force is the force that can cause an object to _____

Forces on an Inclined Plane

The ______ always ______ the angle between _____ and _____. Use ______ to find the components.

Example

A trunk weighing 562 N is resting on a plane inclined 30° above the horizontal. Find the normal and frictional forces.

Example

A 62 kg person on skis is going down a hill sloped at 37°. The coefficient of kinetic friction between the skis and the snow is 0.15. How fast is the skier going 5 s after starting from rest?

Equilibrant

- Equilibrant a _____ that puts an object in ____.
- To find the equilibrant:
- Find the ______ of all the forces on the object.
- The equilibrant is the ______
 but ______

EX: What is the equilibrant for an 8 N force applied at 0°,a 6 N force applied at 90°, and a 7 N force applied at 60°?

EX: What is the tension in each cable?

www.shutterstock.com 54987883